Statistics
Fall 2022
Lecture 3

Class QZ 2
Consider the Sample $2,4,5,5,9$

1) Sample Size

Summation

2) Find $\sum x=2+4+5+5+9=25$

Add all data elements
3) Sind, $\sum x^{2}=2^{2}+4^{2}+5^{2}+5^{2}+9^{2}=4+16+25+25+81=\sqrt{151}$ square each data elements, then add.
Summation

Consider az results of randomly selected students given below:
STEM Plot
find class width if we Range $=$ Max $-\operatorname{Min}=36$ wish to have a freq. table Midrange $: \frac{\text { max }^{+} \text {Min }}{2}=29$ with 4 classes.

Mode $=$
class width $=\frac{\text { Range }}{\# \text { classes }}=\frac{36}{4}=9$
If decimal \Rightarrow Round-up $\Rightarrow C W=9+1=10$
If whole $\# \Rightarrow$ Add 1

Draw histogram using class BNDRS $\dot{\varepsilon}$ class F.

Draw Freq. Polygon

- class MP
- One extra MP on each Side
- class F

Draw Pie chart - Circle

- \% F for size of each slice
- class limits to name each slice

Basic Computations in statistics: $5 G 5-8$
$n \rightarrow$ Sample Size
$x \rightarrow$ Data elements
$\sum x \rightarrow$ Sum of data elements
$\bar{x} \rightarrow$ " x-bar" \rightarrow Sample Mean (Average)
$\bar{x}=\frac{\sum x}{n}$
Consider the Sample below $1,2,4,4,5,9$

$$
\begin{aligned}
& n=6 \quad \sum x=1+2+4+4+5+9=25 \\
& \bar{x}=\frac{\sum x}{n}=\frac{25}{6}=4.1 \overline{6} \quad \begin{array}{l}
\text { Round to } \\
1-\text { decimal }
\end{array} \\
& \overline{\bar{x} \approx 4.2}
\end{aligned}
$$

mode: 4

Consider the Sample below

$$
2,4,5,5,7,7,8,10
$$

1) $n=8$
2) Range $=10-2=8$
3) Midvange $=\frac{10+2}{2}$
4) Mode: 5 ! 7

Bimodal
5) $\sum x=2+4+5+5+7+7+8+10$ $=6$

Bimodal

$$
=48
$$

6) $\bar{x}=\frac{\sum x}{n}=\frac{48}{8}=6$
$n \rightarrow$ Sample Size
$x \rightarrow$ Data elements
$\sum x \rightarrow$ add data elements
$x^{2} \rightarrow$ Data elements ${ }^{2}$
$\sum x^{2} \rightarrow$ square each data elements, then add.
$\bar{x} \rightarrow$ "x-bar" \rightarrow Sample Mean (Average)
$S^{2} \rightarrow$ Sample Variance $S^{2}=\frac{\sum(x-\bar{x})^{2}}{n-1}$

$$
s^{2}=\frac{n \sum x^{2}-\left(\sum-1\right)^{2}}{n(n-1)}
$$

Consider the Sample below

$$
1,3,6,7,12
$$

1) $n=5$
2) Range $=12-1=11$
3) Midrange $=\frac{2+1}{2}=6.5$
4) Mode None
5) $\sum x=1+3+6+7+2=29$
6) $\bar{x}=\frac{\sum x}{n}=\frac{29}{5}$
7) $\sum x^{2}=1^{2}+3^{2}+6^{2}+7^{2}+12^{2}=239$
8) $S^{2}=\frac{n \sum x^{2}-(\Sigma x)^{2}}{n(n-1)}=\frac{5 \cdot 239-29^{2}}{5(5-1)}=\frac{354}{20}=17.7$

Consider the information given below $n=8 \quad \sum x=119 \quad \sum x^{2}=1841 \quad \operatorname{Min}=10 \quad \operatorname{Max}=20$

1) Range $=20-10=10$
2) Midrange $=\frac{20+10}{2}=15$
3) $\bar{x}=\frac{\sum x}{n}=\frac{119}{8}=44.875$
4) $S^{2}=\frac{n \sum x^{2}-\left(\sum x\right)^{2}}{n(n-1)}=\frac{8 \cdot 1841-119^{2}}{8(8-1)}=\frac{567}{56}=10.125$
5) Round \bar{x} to
a) whole \# 15
b) 1-decimal 14.9
6) Round s^{2} to
a) Whole \# 10
b) 1-decimal 10.1
c) 2 -decimal 10.13

Given $\quad n=5, \quad \sum x=20, \quad \sum x^{2}=80$

1) $\bar{x}=\frac{\sum x}{n}=\frac{20}{5}=4$
2) $S^{2}=\frac{n \Sigma x^{2}-(\Sigma x)^{2}}{n(n-1)}=\frac{5 \cdot 80-20^{2}}{5(5-1)}=\frac{0}{20}=0$
3) $\sqrt{\mathrm{s}^{2}}=\sqrt{0}=0$

Consider the Sample below

$$
2,4,4,5,5
$$

1) $n=5$
2) $\sum x=20$
3) $\sum x^{2}=86$
4) $\bar{x}=\frac{\sum x}{n}=\frac{20}{5}=4$
5) $s^{2}=\frac{n \sum x^{2}-\left(\sum x\right)^{2}}{n(n-1)}=\frac{5 \cdot 86-20^{2}}{5(5-1)}=\frac{30}{20}$
$=1.5$
6) $S=\sqrt{S^{2}}=\sqrt{1.5} \approx 1.225$

Consider the Sample below

$$
0,2,4,6,8,10
$$

1) $n=6$

$$
\text { 2) } \sum x=\sqrt{30}
$$

3) $\sum x^{2}=220$
4) $\bar{x}=\frac{\sum x}{n}=\frac{30}{6}=(5) 5 S^{2}=\frac{n \sum x^{2}-\left(\sum x\right)^{2}}{n(n-1)}$
5) $S=\sqrt{S^{2}}$

$$
=\frac{6 \cdot 220-30^{2}}{6(6-1)}
$$

$$
=\sqrt{14}
$$

$$
\approx 3.742
$$

$$
=\frac{420}{30}=14
$$

How to estimate S :

$$
S \approx \frac{\text { Range }}{4}
$$

"The range rule-of-thumb"

Class QZ 3
Use the Sample below to find

1) $\sum x=15$

$$
1,3,3,3,5
$$

2) $\sum x^{2}$

$$
53
$$

3) $\bar{x}=\frac{\sum x}{n}=\frac{15}{5}=3$
4) $S^{2}=\frac{n \sum x^{2}-\left(\sum x\right)^{2}}{n(n-1)}=\frac{5 \cdot 53-15^{2}}{5(5-1)}=\frac{40}{20}=2$
