

Class QZ 2
Consider the Sample
$$(2, 4, 5, 5, 9)$$

1) Sample Size \mathbb{R}
 $x = 5/$
2) Sind $\sum x = 2 + 4 + 5 + 5 + 9 = 25/$
Add all data elements
3) Sind $\sum x^2 = 2^2 + 4^2 + 5^2 + 5^2 + 9^2 = 4 + 16 + 25 + 25 + 8 = 151$
Square each data elements, then add.
Summation

Consider QZ results of randomly selected Students given below: STEM Plot 11335 11 13 13 15 20 20 23 - -20035678 43 45 46 47 <mark>3</mark>256677<mark>888</mark>9 n=25 43567 Min=11, Max=[47] Range = Max - Min = 36 find class width is we wish to have a Sreq. table Midrange = Max + Min = 29 with 4 classes. Mode = 38 class width= Range = 36 =9 If decimal => Round-up => CW=9+1=10 If whole # => Add I

October 26, 2022

Basic Computations in Statistics: S& 5-8

$$n \rightarrow Sample Size$$

 $x \rightarrow Data elements$
 $\sum x \rightarrow Sum oS$ data elements
 $\overline{x} \rightarrow "x - bar" \rightarrow Sample Mean (Average)$
 $\overline{x} = \frac{\sum x}{n}$ Consider the Sample below
 $1, 2, 4, 4, 5, 9$
 $n = 6$ $\sum x = 1 + 2 + 4 + 4 + 5 + 9 = 85$
 $\overline{x} = \frac{\sum x}{n} = \frac{25}{6} = 4.16$ Round to
 $1 - \operatorname{decimal}$
 $\overline{x} \approx 4.2$

Consider the sample below
2, 4, 5, 5, 7, 7, 8, 10
1)
$$n = 8$$

2) Pange = 10-2=8
3) Midwarge = $\frac{10+2}{2}$
4) Mode: $5 = 7$
5) $\sum \chi = 2+4+5+5+7+7+8+10$
Bi modal
= $\frac{48}{10}$
6) $\chi = \frac{2\chi}{n} = \frac{48}{8} = 6$
 $n = 0$ Sample Size
 $\chi = 0$ Data elements
 $\sum \chi = 0$ Data elements
 $\chi^2 = 0$ Data elements
 $\chi^2 = 0$ Data elements
 $\chi^2 = 0$ Square each data elements, then dold.
 $\overline{\chi} = 0$ " χ -bar" = Sample Mean (Average)
 $S^2 = 0$ Sample Varian/e $S^2 = \frac{2(\chi - \overline{\chi})^2}{n(n-1)}$

Consider the Sample below
1,3,6,7,12
()n=5 a) Range=12-1=11 3) Michrange=
$$\frac{12+1}{2}$$
-65
4) Mode: None 5) $\sum x = 1 + 3 + 6 + 7 + 12 = 29$ 6) $\overline{x} = \frac{5}{n} = \frac{29}{n} = \frac{5}{5}$
7) $\sum x^2 = 1^2 + 3^2 + 6^2 + 7^2 + 12^2 = 239$
8) $S^2 = \frac{n \sum x^2 - (\sum x)^2}{n(n-1)} = \frac{5 \cdot 239 - 29^2}{5(5-1)} = \frac{354}{20} = 17.7$

Consider the information given below

$$m \ge 8 \quad \ge \chi \ge 119 \quad \ge \chi^2 \ge 1841$$
 Min = 10 Max = 20
1) Range = 20 - 10 = 10 $=$ 2) Midrange = $\frac{20 + 10}{2} = 15$
3) $\overline{\chi} = \frac{\ge \chi}{n} = \frac{119}{8} = \frac{14.875}{8}$
4) $S^2 = \frac{n \ge \chi^2 - (\ge \chi)^2}{n(n-1)} = \frac{8 \cdot 1841 - 119^2}{8(8-1)} = \frac{567}{56} = 10.125$
5) Round $\overline{\chi}$ to
a) whole # 15 b) 1-decimal (4.9 c) 2-decimal
14.88
6) Round S^2 to
a) whole # 10 b) 1-decimal [0.1] c) 2-decimal [0.13]

Given
$$n=5$$
, $\sum x = 20$, $\sum x^2 = 80$
1) $\overline{x} = \frac{\sum x}{n} = \frac{20}{5} = [H]$
a) $S^2 = \frac{n \sum x^2 - (\sum x)^2}{n(n-1)} = \frac{5 \cdot 80 - 20^2}{5(5-1)} = \frac{0}{20} = [0]$
3) $\sqrt{S^2} = \sqrt{0} = [0]$

Consider the sample below
2, 4, 4, 5, 5
1)
$$\eta = 5$$
 2) $\geq \chi = 20$ 3) $\geq \chi^2 = 86$
4) $\chi = \frac{2\chi}{\eta} = \frac{20}{5} = 4$ 5) $S^2 = \frac{\eta \geq \chi^2 - (\geq \chi)^2}{\eta(\eta - 1)} = \frac{5 \cdot 86 - 20^2}{5(5 - 1)} = \frac{30}{20}$
 $= 1.5$
6) $S = \sqrt{S^2} = \sqrt{1.5} \approx 1.225$

